lunes, 6 de agosto de 2012

Medidas tendencia central: Media Mediana


Este tipo de medidas nos permiten identificar y ubicar el punto (valor) alrededor del cual se tienden ha reunir los datos (“Punto central”). Estas medidas aplicadas a las características de las unidades de una muestra se les denomina estimadores o estadígrafos; mientras que aplicadas a poblaciones se les denomina parámetros o valores estadísticos de la población. Los principales métodos utilizados para ubicar el punto central son la media, la mediana y la moda.



MEDIA

Es la medida de posición central más utilizada, la más conocida y la más sencilla de calcular, debido principalmente a que sus ecuaciones se prestan para el manejo algebraico, lo cual la hace de gran utilidad. Su principal desventaja radica en su sensibilidad al cambio de uno de sus valores o a los valores extremos demasiado grandes o pequeños. La media se define como la suma de todos los valores observados, dividido por el número total de observaciones.

Forma de Calcular la Media de los datos

Cuando los valores representan una población la ecuación se define como:
Ecuacion de La Media para poblaciones
 
Donde (m) representa la media, (N) representa el tamaño de la población y (Xi) representa cada uno de los valores de la población. Ya que en la mayoría de los casos se trabajan con muestras de la población todas las ecuaciones que se presenten a continuación serán representativas para las muestras. La media aritmética para una muestra esta determinada como

Ecuación de la Media para Muestras

Donde (X) representa la Media para la muestra, (n) el tamaño de la muestra y (Xi) representa cada uno de los valores observados. Esta fórmula únicamente es aplicable si los datos se encuentran desagrupados; en caso contrario debemos calcular la media mediante la multiplicación de los diferentes valores por la frecuencia con que se encuentren dentro de la información; es decir,

Ecuación de la Media para valores Agrupados

Donde (Yi) representa el punto medio de cada observación, (ni) es la frecuencia o número de observaciones en cada clase y (n) es el tamaño de la muestra siendo igual a la suma de las frecuencias de cada clase.

Para entender mejor este concepto vamos a suponer que hemos tomado la edad de 5 personas al azar cuyos resultados fueron (22, 33, 35, 38 y 41). Para facilitar su interpretación se han generado tres rangos de edad los cuales se han establecido de 21 a 30 años, de 31 a 40 años y de 41 a 50 años. Si nos fijamos en estos rangos notaremos que los puntos medios son 25, 35 y 45 respectivamente. Los resultados de la organización de estos datos se representan en la tabla [5-1].

Ejemplo del calculo de la Media para datos Agrupados - Medidas de Tendencia Central


Si aplicamos la fórmula para valores agrupados obtendríamos que la media es igual a

Lo que nos indicaría que el promedio de edad de los encuestados es de 35 años. Si ha estos mismos resultados le aplicamos la ecuación para datos desagrupados (Ecuación 5-3), tomando como referencia cada uno de los valores individuales, obtendríamos que la media es igual a

No hay comentarios:

Publicar un comentario